A general stochastic fixed-point theorem for continuous random operators on stochastic domains

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Common Fixed Point Theorem for Two Random Operators using Random Mann Iteration Scheme

In this paper, we proved that if a random Mann iteration scheme is defined by two random operators is convergent under some contractive inequality the limit point is a common fixed point of each of two random operators in Banach space.

متن کامل

Vector ultrametric spaces and a fixed point theorem for correspondences

In this paper, vector ultrametric spaces are introduced and a fixed point theorem is given for correspondences. Our main result generalizes a known theorem in ordinary ultrametric spaces.

متن کامل

A Common Fixed Point Theorem Of Two Random Operators Using Random Ishikawa Iteration Scheme

In this paper, we discuss the convergence of random Ishikawa iteration scheme to a common random fixed point for a certain class of random operators in Banach spaces. AMS Mathematics Subject Classification (2010): 47H10, 54H25

متن کامل

A fixed point theorem for convex and decreasing operators

In this paper, we present a new fixed point theorem for noncompact, convex and decreasing operators, which extends the existing corresponding results. As a sample, we give an application of the fixed point theorem to the two-point boundary value problem for a second-order differential equation. 2005 Elsevier Ltd. All rights reserved.

متن کامل

A common fixed point theorem on ordered metric spaces

A common fixed point result for weakly increasing mappings satisfying generalized contractive type of Zhang in ordered metric spaces are derived.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1978

ISSN: 0022-247X

DOI: 10.1016/0022-247x(78)90279-2